Tenth degree number fields with quintic fields having one real place

نویسنده

  • Schehrazad Selmane
چکیده

In this paper, we enumerate all number fields of degree 10 of discriminant smaller than 1011 in absolute value containing a quintic field having one real place. For each one of the 21509 (resp. 18167) found fields of signature (0, 5) (resp. (2, 4)) the field discriminant, the quintic field discriminant, a polynomial defining the relative quadratic extension, the corresponding relative discriminant, the corresponding polynomial over Q, and the Galois group of the Galois closure are given. In a supplementary section, we give the first coincidence of discriminant of 19 (resp. 20) nonisomorphic fields of signature (0, 5) (resp. (2, 4)).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quadratic extensions of totally real quintic fields

In this work, we establish lists for each signature of tenth degree number fields containing a totally real quintic subfield and of discriminant less than 1013 in absolute value. For each field in the list we give its discriminant, the discriminant of its subfield, a relative polynomial generating the field over one of its subfields, the corresponding polynomial over Q, and the Galois group of ...

متن کامل

On the Multiplicity of Discriminants of Relative Quadratic Extensions of Quintic Fields

According to Hermite there exists only a finite number of number fields having a given degree, and a given value of the discriminant, nevertheless this number is not known generally. The determination of a maximum number of number fields of degree 10 having a given discriminant that contain a subfield of degree 5 having a fixed class number, narrow class number and Galois group is the purpose o...

متن کامل

Minimum Discriminants of Imprimitive Decic Fields

In this paper, we compute the minimum discriminants of imprimitive degree 10 fields for different combinations of Galois group and signature. We use class field theory when there is a quintic subfield, and a Martinet search in the more difficult case where there is only a quadratic subfield. If L is a degree n number field, let DL be its discriminant, and dL := |DL| its absolute discriminant. L...

متن کامل

Fundamental units in a parametric family of not totally real quintic number fields

In this article we compute fundamental units for a family of number fields generated by a parametric polynomial of degree 5 with signature (1, 2) and Galois group D5.

متن کامل

Quintic Polynomials and Real Cyclotomic Fields with Large Class Numbers

We study a family of quintic polynomials discoverd by Emma Lehmer. We show that the roots are fundamental units for the corresponding quintic fields. These fields have large class numbers and several examples are calculated. As a consequence, we show that for the prime p = 641491 the class number of the maximal real subfield of the pth cyclotomic field is divisible by the prime 1566401. In an a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 70  شماره 

صفحات  -

تاریخ انتشار 2001